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Foundations of Blockchain
Protocols

 Understand the fundamental security properties
of these protocols and obtain proofs of security in
formal adversarial models.
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..What is an objective”

e Compare:

Alice and Bob

wan
commu
SeCu

1O
nicate

rely

VS.

Functionality F ..ke
The functionality Feen.xe parametrized by a domain D proceeds as follows:
(a) Upon receiving message of the form (keyexchange, sid, S, R) from some ITI S, if this is the first
activation, set k = L and send (keyexchange, sid, S, R) to S. (Otherwise, ignore the message).
(b) Upon receiving a value (Corrupt, sid, P) from S, mark P € {S,R} as corrupted and output k to S.

(c¢) Upon receiving a message of the form (setkey, sid, S, R, k") from the adversary, if either S or R is

corrupt, then set key k = K/, else set k & D. Output a delayed message (setkey,sid,S, R, k) to §
and R and halt.

(d) Upon receiving (External-info, P, sid,m’) from the adversary, where P € {S,R}, if k # L and an
output was not yet delivered to either party, output (Sign, (P, (P',sid)),(m’,sid, P)) to G, (where
P’ is the other party), and forward the response to the adversary.

(e) Upon receiving (Corrupt-sign, sid, P,m') from the adversary, where P € {S, R}, if P is marked as
corrupted then output (Sign, (P, (P, sid)),(m’,sid,P)) to G, and forward the response to the
adversary.



Secure Channel as an Objective

secure channel
between two
parties

TCP/IP,
local randomness,

PKI or authenticated

ENES

active man-in-
the-middle
attacker

Diffie Hellman
1976 —
TLS1.2 in 2008

security proofs
DY1983 —
BFKPSB2014
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What about consensus?

* One of the classical problems in Computer
Science, [Lamport,Shostak,Pease 1980].



The Consensus Problem

Implementing consensus:

<insert,b1> <insert,b2> <insert,bn>

!

!
b

= all parties output the same value

= If all honest parties have the same insert
bit, then this matches the output

Termination = all honest parties terminate
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The Ledger Objective

* First formal definition of the objective of a “robust
transaction ledger” was formulated by
Garay, K, Leonardos in [GKL14]

hitps://eprint.iacr.org/2014/765



The Ledger Objective

* First formal definition of the objective of a “robust
transaction ledger” was formulated by
Garay, K, Leonardos in [GKL14]

hitps://eprint.iacr.org/2014/765

* |nthe same work, we proved that a suitable
abstraction of the bitcoin protocol (the bitcoin
backbone) realizes the ledger objective

e ... and also can be used to achieve other primitives
such as consensus (with some work..)



Defining the ledger objective
imagine that time is divided in rounds

and protocol organizes transactions in a sequence of blocks

Persistence: parameter k. If an honest

party reports a transaction tx as stable”

(>k blocks deep) then, whenever an honest party
reports it as stable, it will be In the same position

Liveness: parameters u, K. If'allfhonest parties
attempt to insert the transaction ix in'the ledger,
then, after u rounds, all honest parties will report
It as stable (>k blocks deep) and will always do so

transaction processing time : u as a function of k



Synchronous Model

Time Is divided Iin rounds.

In each round each party is allowed g queries to a
hash function (RO)

messages are sent through a “diffusion™ mechanism

The adversary is rushing and may :
1. spoof messages

2. Inject messages

3. reorder messages



Model Participants

* There are n-t honest parties each one producing q queries
to the hash function per round.

* The adversary is able to control t parties acting as a
malicious mining pool.

» A “flat” version of the world in terms of hashing power.

* |t is worse for honest parties to be separate (they have to
pay the price of being decentralized).



Fxecution & View

protocol II
3 PPT machines  jqyersary A n parties

environment 2

VIEW), ~(1*) concatenation of the
view of each party at each round

random variable with support :
1. coins of A, Z, n copies of II
2. Random oracle




Round structure

end of round i beginning of round i+17

users mput
output

Env «—— 11 II 1I

" broadcast &%

rushing

g queries




Property of a protocol

fix
a protocol II
a number of parties n, t of which

controlled by adversary
a predicate @

We say that the protocol has property @
with error € If and only If

VAVZ Prob[Q(VIEW 4 z(1")] > 1 —¢

typically : ¢ = negl()\)



Generality of the model

« We quantify over all possible adversaries; this includes:

a large mining pool
that is performing
some type of selfish
mining

some parties
receiving only some
of the messages

11 11
Adv

Or any combination thereof




The Bitcoin Backbone

Protocol
[Garay-K-Leonardos2014]

e An abstraction based on the bitcoin
implementation.

* Importantly : it distinguishes between data
structure (blockchain) and application layer
(transactions).



Bitcoin Backbone (1)

parameterized by V (-),1(-), R(:)
and G(-), H(-) hash functions

 players have a state C in the form of a “blockchain”;

() |
G( )letr < ~ )letr
Li—1

The contents of C satisfy the predicate

V(ili‘l, - ,LEZ') — true



Bitcoin Backbone (2)

parameterized by V(-),I(-), R(-)
and G(:), H(:) hash functions

 Within a round, players obtain (INSERT, x) symbols from
the environment and network and process them

r— Fo ol loeal infe. o)

* Then they use their g queries to f(.) to obtain a new
block by trying ctr =0,1,2, ...

.
G( ZH) ctr
Li+1




Bitcoin Backbone (3)

parameterized by V' (-), R(-), I(-)

 |f a player finds a new block it extends C

e The new (C Is propagated to all players via the
(unreliable/anonymous) broadcast
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Bitcoin Backbone (4)

* A player will compare any incoming chains and the
local chain w.r.t. their length/difficulty
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R(Qfl,ﬁl?z, 5 ,.CU@‘_|_1)




Bitcoin Backbone (4)

* A player will compare any incoming chains and the
local chain w.r.t. their length/difficulty

> >

Yi—1 Yi

* Finally a player given a (Read) symbol it will return

R(xlaa;?a 5 ,.’17@‘_|_1)




Bitcoin Backbone (4)

* A player will compare any incoming chains and the
local chain w.r.t. their length/difficulty

> >

Yi—1 Yi

Better Chain !
Is adopted

* Finally a player given a (Read) symbol it will return

R(xlaa;?a 5 ,.’17@‘_|_1)




Validate

1: function validate(C)

2: b+ V(Xc)

3: if bA (C # €) then > The chain is non-empty and meaningful w.r.t. V(-)
4: (8, z, ctr) « head(C)

5: s’ + H(ctr,G(s,x))

6: repeat

7: (s, z,ctr) + head(C)

8: if validblock?((s,x, ctr)) A (H(ctr,G(s,z)) = s’) then

9: s s > Retain hash value
10: C + Cl > Remove the head from C
11: else

12: b + False

13: end if

14: until (C =€) V (b = False)

15: end if

16: return (b)
17: end function



1: function pow(z,C)

T o T T e T e S S S S

18:
19:

if C =& then
s+ 0
else

(8,2’ ctr’) < head(C)
s < H(ctr',G(s',2"))
end if
ctr + 1
B+ ¢
h + G(s,x)
while (ctr < g) do
if (H(ctr,h) < T) then
B « (s,z,ctr)
break
end if
ctr < ctr + 1
end while
C«+CB
return C

20: end function

POW

> Determine proof of work instance

> This H(-) invocation subject to the g-bound

> Extend chain



Main Loop

1: C ¢

2: state < €

3: round < 0

4: while TRUE do

5:  C « maxvalid(C, all chains found in RECEIVE())

6: (state,x) « I(state,C,round, INPUT(), RECEIVE()) > Determine the z-value.
7. Chew + pow(z,C)

8: if C # Chew then

9: C « Chew

10: BROADCAST(C)

11: end if

12: round < round + 1

13: if INPUT() contains READ then

14: write R(x¢) to OuTPUT()

15: end if
16: end while



Requirements

* |nput Validity. Function I(.) produces inputs
acceptable according to V(.)

* |nput Entropy. Function I(.) on the same input, will
not produce the same output with overwhelming
probabillity.



INnput Entropy

H(car,G(s,x)) <T

« Simplifying assumption: I(.) chooses a random nonce
as part of x.

 Subsequently, function G maps the random nonces to

their hashes.

the parties choose the same Qtotal 95—
random nonce twice, has probability <= )

G(.) maps those values to the same __ <Qtotal> 9=

one (collision) 9




Backbone Protocol
Properties

Common Prefix Chain Quality Chain Crowth

(informally) (informally) (informally)

the chain of any
honest player grows at
least at a steady rate -
the chain speed
coefficient

If two players prune a Any (large enough)
sufficient number of chunk of an honest
blocks from their player’s chain will
chains they will obtain § contain some blocks

the same prefix from honest players

Based on work of [GKL14, KP15]



CP: will honest players
converge”?

25

l: X5 ,' N 'o'\
g ' Z4
Y
X3 LY

X2 "7

X3
X2

combined view

| environment |




Common Prefix

\V/T17T27 (Tl < T2)7P17P27 with 61762 : Cl|_k = CQ

History : “strong” version of common prefix [K-Panagiotakos15,16].
Originally [GKL14] considered the case withT1 = 72

Note that [GKL14] did not black-box reduce persistence to CP.
[PassSeemanShelat16] highlighted this and proposed “consistency”

to provide a black-box reduction. For the same goal,

[K-P15,16] strengthened common prefix, as shown above.




CQ: are honest blocks going
to be adopted by the parties?

l environment |



Chain Quality

Parameters 4 € (0,1),k € N

The proportion of blocks in any k-long subsequence

produced by the adversary is less than uk

History : Property introduced in [GKL14]




Chain Growth: does the
chain grow?

l environment |



Chain Growth

Parameters 7 € (0,1),s € N

Vry, o honest player P with chains Cyq, Co
ro—r1>8 = |Co| —|C1| > Ts

History : Property introduced in [KP15], while it
was implicit in [GKL14] (proven a related lemma but
never given name).




Proof strategy

1.Define the notion of typical execution.

2.Argue that typical executions have with
overwhelming probability.

3.Prove CG, CP, CQ

4.Derive persistence and liveness.



Notations, (1)

Let S a set of consecutive rounds.
X(S) = number of successful rounds.
Y(S) = number of uniquely successtul rounds.

Z(S) = total number of PoWs computed during S.



Notations, (2)

probability T o
at least one honest f=1-(10-g; )a(n=t)
party finds a POW p=q/2"
N a round
Observe -
f:pT(n—t) (QK)Z(,..)spT(n_t)
probability

exactly one honest
party finds a PoW

T
> pT'(n —t)(1 o

)Q(n—t)—l > (1 B f)pT(n B t)



-Xpectations

Easy from linearity :
E[X(S)] = pT'(n —t)|S]
EY(S)] > (1= f)E[X(S)
E[Z(S)] = pTt|S]

Suppose now that e t_ g >144

1t follows
EX(S) > 1+90)FE|Z(S)]

EY(S)] > (1+0)(1 = f)E[Z(S)]




Typical Executions, (1)

* Let K be the security parameter.

* A polynomial in kK execution is typical with
parameter € if for any set of rounds S, |S| = (k)

< (1 + e)EZ(S)

* No collisions, or predictions take place against H(.)



Typical Executions, (2)

Theorem. Typical executions happen almost always

Proof

Case 1. Suppose that

35 : X(S) < (1 — €)E[X(S

VY (S) < (1 —€¢)EY(S)
VZ(S) > (1+e)E|Z(S)

)

X,Y,Z the binomial distribution so we can show
with overwhelming probability in K via a Chernoff bound.

Case 2.

here Is a collision or prediction

Follows from RO assumption + input e

‘or the hash function.

ntropy assumption.



Typical Executions, (2)

* Chernoff bounds
X is a binomial distribution @ = E[X]
Pr[X < (1-8)u] < e ® 1/
Pr[X > (1 +0)u] < e 1/3

E.g., sequence of nindependent Bernoulli Trials
X=5% X,
1=1

X, € {0,1},Pr[X; = 1] = p
= np




Common Prefix, (1)

Recall:

\V/T1,7‘2, (7"1 S TQ),Pl,PQ, with Cl,CQ g Cl|_k j CQ

Proof (by contradiction): . .C% P,

-
| ast honest : C
block at time 70 l:p
stamp < 7 ol

— : . T2

(could be the genesis) 1
L — Q(lﬁ)) first round >= 71 where an honest

party has a chain Cé Withc |k 4 C!
1 2



Common Prefix, (2)

At round r — 1

All honest parties have a chain C/ ~" with C{k <cr!
At the end of round 7 — 1 chain C, is transmitted
for which we know that

" £ Col > 1G4

[by the fact that (., will be accepted
at round 7 by an honest party while
at least one honest party at round

ry < rpossessed chain Cq ]

[by assumption]



Common Prefix, (3)

Consider the setof rounds S={r"+1,...,r —1}
Cs

L ast hohest Cl /
block at time 0 :
'\:

r—1

stamp < 10

(could be the genesis)



Common Prefix, (4)

* Consider a uniquely successful round in
S={r"+1,...,r—1}
 lemma #1. If a block created in a uniquely successful
round at position min a blockchain,
then no other honest player will ever mine at position
m in any blockchain.

* [herefore each uniguely successful round in S
creates a block that must be matched by another block
of the adversary

- lemma #2. Such adversarial block should also be
created within S (by the choice of r*and typicality)



Common Prefix, (5)

* |t follows that Z(S)>Y(S) and |S|=Q(k)

By typicality: Y (S) > (1 —e)E[Y(S)
Z(S)< (1+e)E|Z(S)

recall: (1+€)pTt[S| > (1 —€)(1 — f)pT(n —1)]5]
E[X(S)] ~ pT(n — 1)|S) _on—t__ l4e
EY(S)> (- HEX(ES) o U ols)

rom which we obtain a contradiction as long as
EZ(S)| = pTt|S] 1 +e
1+0>
I 1= -7
>14+9 which is implied by: 5> 2 4 f
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Chain Quality, (1)

 Consider a chain C of an honest party and ¢
consecutive blocks from that chain.

1
* The chain quality coefficient is # = h\

where 2t 1+ 9)

Proof (by contradiction)

Consider a sequence of blocks B, ... B,
INn the chain of an honest party with ¢/ =v —u + 1



Chain Quality, (2)

* Define an expanded sequence of blocks

B, ...By, L=v—-u+1>/

SO that (or is genesis)

(1)B.,was produced by an honest party at round 71
(2) B,,was accepted by an honest party at round 72

(such extension is well defined) S = {ri,...,ra}
r = number of blocks produced by honest parties

For the sake of contradiction:  x < (1 — )¢



Chain Quality, (3)

 Lemma #1. Because of typicality all the L blocks
are computed within S ={ry,...,7r3}

e Lemma #2. Because of the choice of S, we have that
L > X (S)(otherwise no honest party would accept B,)

e Using the above and r < (1—p)l we have :

Z(S)>L—x>uL>uX(S)



Chain Quality, (4)

* |t follows that Z(S5) =z pX(S) and S| = Q(k)

By typicality: X(S5) > (1 —¢€)E|X(S5)
Z(S) < (1+e)E|Z(S)

A1+ €)pTt|S| > (1 —¢e)pT(n—1t)|S]

recall: —
E[X(S)__%pT(n—t)\S\ <:>n_t<)\:_+€
EY(S)] > (1= f)E[X(5)] | | e
from which we obtain a contradiction as long as
EZ(S)| = pTt|S] 1+ e
n — t 14+0 > -
L > )\(1 T 6) which is implied by: S
0 > 2¢
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Chain Growth, (1)

 Consider a chain C of an honest party

* The chain growth coefficientis 7= (1 —¢)f
s = Q(kK)

Proof (direct)

Observe that with any successful round the chain
of the honest parties grows by a block (independently
of the adversarial strategy)



Chain Growth, (2)

* In s = |S|rounds, we have an expectation of

E[X(S)] =~ pT(n —1)|S| blocks

 Due to typicality: X(S) > (1 —¢)E[X(S)]

Thus, we will obtain (1 — e)pT'(n —t)s blocks
=(1—¢€)fs



Chain Growth, (2)

* In s = |S|rounds, we have an expectation of

E[X(S)] =~ pT(n —1)|S| blocks

 Due to typicality: X(S) > (1 —¢)E[X(S)]

Thus, we will obtain (1 — e)pT'(n —t)s blocks
=(1—¢€)fs




Proving our opjective

The bitcoin backbone implements a robust transaction ledger.”

A . (1) typical executions with error € 5> 2 + f
ssumptions: (2) n — ¢
i & > A(1+9) frpT(n—t)

Part 1 : Persistence

Assume persistence - lie:,

there Is a transaction reported ag,stable
by an honest player P; at round

but at round ro > 11 Py
IS reported as stable by honest player
In a different position




Proving our objective, (2)

Given the condition

It should hold that the
chains Ci,C2 of P, P, satisfy

(31”“ contains tx at round 71
(32”“ contains tx at round 72 = 1

but In a different position, thus
ci* £c,  which violates CP




Proving our objective, (3)

“The bitcoin backbone implements
a robust transaction ledger.”

1

Part 2 : Liveness with parameter u =

a1

Consider a transaction transmitted for u rounds,
we examine what happens at the onset of the

next round.




Proving our objective, (4)

Given the chain growth
there will be 7u blocks in each honest party chain

of those, (1 — %)m will originate to an honest

party. Given the choice of u
we have that this is at least one, and hence
It will include the transaction tx.




Proving our objective, (4)

Given the chain growth
there will be 7u blocks in each honest party chain

of those, (1 — %)m will originate to an honest

party. Given the choice of u
we have that this is at least one, and hence
It will include the transaction tx.




Recall : Consensus

Implementing consensus:

<insert,b1> <insert,b2> <insert,bn>

!

!
b

= all parties output the same value

= If all honest parties have the same insert
bit, then this matches the output

Termination = all honest parties terminate



Applying the backbone
orotocol

* |tis all about defining V, |, R :

e \/ = validity predicate.
* | = Input function

e R = read function



The Nakamoto "consensus
orotocol”

Re: Bitcoin P2P e-cash paper
Satoshi Nakamoto Thu, 13 Nov 2008 19:34:25 -0800

James A. Donald wrote:

> It is not sufficient that everyone knows X. We also

need everyone to know that everyone knows X, and that
everyone knows that everyone knows that everyone knows X
- which, as in the Byzantine Generals problem, is the
classic hard problem of distributed data processing.

The proof-of-work chain is a solution to the Byzantine Generals' Problem. I'll
try to rephrase it in that context.

A number of Byzantine Generals each have a computer and want to attack the
King's wi-fi by brute forcing the password, which they've learned is a certain
number of characters in length. Once they stimulate the network to generate a
packet, they must crack the password within a limited time to break in and
erase the logs, otherwise they will be discovered and get in trouble. They
only have enough CPU power to crack it fast enough if a majority of them attack
at the same time.

They don't particularly care when the attack will be, just that they all agree.
It has been decided that anyone who feels like it will announce a time, and

whatawar +ima 1ic haard Ffive+r will ha +ha AfFFinial a++anl +ima Tha nrahlam 1c

https://www.mail-archive.com/cryptography@metzdowd.com/msg09997.html



Applying the backbone for

consensus, (1)

Nakamoto “consensus protocol”

Content validation pred-

icate V(+)

V({z1,...,Z,)) is true if and only if it holds that v; = ... = v, €
{0,1}, p1,..., pn € {0,1}" where z; = (v;, p;).

Chain reading function
R(-) (parameterized by

k)

If V(z¢) = True and len(C) > k, the value of R(C) is the (unique)
value v that is present in each block of C, while it is undefined if

V(z¢) = False or len(C) < k.

Input contribution func-

tion I(-)

If ¢ = 0 and (INSERT,v) is in the input tape then
I(st,C,round, INPUT()) is equal to (v, p) where p € {0,1}" is a ran-
dom value; otherwise (i.e., the case C # ), it is equal to (v, p) where
v is the unique v € {0,1} value that is present in C and p € {0,1}" is

a random value. The state st always remains e.

It works .. but only with constant probability of success

(not overwhelming)




Applying the backbone for
consensus, (2)

A (1/3) “consensus protocol” (from GKL14)

Content validation pred-

icate V'(+)

V({z1,...,Z,)) is true if and only if vy,...,v, € {0,1},p1,...,pn €
{0,1}* where v;, p; are the values from the pair z; = (v;, p;).

Chain reading function
R(-) (parameterized by

k)

If V({z1,...,2,)) = True and n > 2k, the value R(C) is the ma-
jority bit of vy,...,vx where z; = (v;, p;); otherwise (i.e., the case
V({z1,...,Z,)) = False or n < 2k) the output value is undefined.

Input contribution func-

tion I(-)

I(st,C,round,INruT()) is equal to (v, p) if the input tape contains
(INSERT,v); p is a random k-bit string. The state st remains always
€.

It works .. but only up to 1/3 adversarial power.




Applying the backbone for
transaction leager

(from GKL14)

Content validation pred-

V({z1,...,Zm)) is true if and only if the vector (z;,...,Z,,) is a valid

icate V(+) ledger, i.e., (z1,...,Z,) € L.
Chain reading function | If V({z4,...,z,)) = True, the value R(C) is equal to (z1,...,Zx):
R(-) undefined otherwise.

Input contribution func-

tion I(-)

I(st,C,round, INPUT()) operates as follows: if the input tape contains
(INSERT,v), it parses v as a sequence of transactions and retains the
largest subsequence z’ < v that is valid with respect to x¢ (and whose
transactions are not already included in x¢). Finally, z = txgz’ where
txp is a neutral random nonce transaction.

it satisfies persistence and liveness with
overwhelming probabillity as long as
also digital signature security holds.




Applying the backbone for
consensus, (3)

 Main obstacle (intuitively)
the blockchain protocol does not provide
sufficiently high chain quality.

* ... We cannot guarantee that we have enough
blocks originating from honest parties.

e How to fix this?



Applying the protocol for
consensus, (4)

 The n parties build a ledger but now generate
transactions based on POW that contain their inputs.

 Once the blockchain is long enough the parties’ prune

the last k blocks and output the majority of the values
drawn from transactions in the ledger.




2-for-1 POWSs

ition of POW |
h« G(s, ) parallel composition of POW protocols

if H(h,ctr) <T...
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2-for-1 POWSs

parallel composition of POW protocols

h+ G(s,z)
if H(h,ctr) <T... h < G(s,z)

h < G(s',z')
h' . G(s’, x') w < H(h, h',ctr)
HHG arli= T . ifw<T...

given ((s, z), ctr) if [w]R < T"..

verify: :

H(G(s,z),ctr) < T el o

given ((s',z'), ctr') \ (. %) (s 1 ) elr)

verify: verity:

Hiti(s o etn = T [H(G(*,%),G(s',z'),ctr' )R < T



Key Lemma

- Lemma. Finding POW solution for either “side” of
the POW protocol is an independent event.

- |note that it works only for a suitable choice of T
and T




|GKL14] consensus protocol, (1)

parties mine POWSs for each block (as in bitcoin backbone)

[g]e) Ig]e) Ig]e)
NP inp NP NP Ig]e)

NP

parties mine POWs for each input in {0,1} (input+nonce)
they keep transmitting POW-inputs, until they are accepted.

Finally, after the blockchain
they chop the last k blocks and return the majorlty
among unique inputs in the (common) prefix.
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solves consensus for honest majority.
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|GKL14] consensus protocoal, (2)

Theorem. The [GKL14] protocol using 2-for-1 POW
solves consensus for honest majority.

recall : the output of the protocol
Key proof idea is the majority bit from the inputs
in the common prefix

The (minuscule) chain quality of the protocol, given
parties transmit inputs until they are accepted, it
guaranteeing that they will be included eventually.

Moreover, because each input, has a POW, the
majority of unique POW-inputs will be originating
from honest parties in any sufficiently long part
of the chain (such as the common pretfix)



Implications to Fairness

* |n the [GKL14] consensus protocol, each set of
parties’ inputs is fairly represented (in terms of
proportionality) in the blockchain. This is not the
case in Bitcoin! (due to block withholding / seltish
mining, [Eyal-Sirer14])

* Using this approach [Pass-Shi16] (and allowing the
protocol to run continuously) argued a fair
blockchain “fruitchain” (where rewards are

allocated ftairly).




|GKL16] The Dynamic
setting : New Objective

* Analyze the bitcoin “backbone” [GKL14] in the
Dynamic - Byzantine setting.

e prove It satisfies the properties of

e common prefix

e chain quality

* chain growth

* Then shot it implements a robust transaction ledger



Dynamic Execution

* Environment creates/disables parties.

* Count the number of ‘Ready’ parties (those that are

mining) in each round r and adversarial parties
N, versus t,

 The environment may increase or decrease the
number of honest parties, but will be subject to a
constraint

VS, |S| <s maxn, <~yminn,
- res resS

(v, s)-respecting environment



Protocol Intuition

Parties include inputs Z; in a block structure and find
POWSs [a hash value less than a target T}

!
Parties adopt chain with highest “difficulty” 2_ 72

Probablllty f(T, TL) — 1 — (1 I )qn

at least one of n parties 2"

finds a POW with target T i

within one round T =~ b|ocgsérp§;rrt<;und, p=gq-2°"

From [GKL14] : fshould be not too small or too big.




importance of f

e |t fbecomes too small, parties do not do progress;
chain growth goes too slow. [liveness is hurt]

e |f fbecomes too large, parties “collide™ all the time;
an adversary, exploiting network scheduling, can
exploit that and lead them to a forked state.
[agreement is hurt]

To resolve this In a dynamic environment,

we may recalculate the target 7to keep f
constant f(T,n) = f(To,no) = fo



larget Recalculation

ng = estimation of the number of ready parties at the onset
To = initial target

m = epoch length in blocks

T = recalculation threshold parameter

T = target in effect
T it Ty < .7
- if%'T()>T'T;

— -1y otherwise

next target =

3 A A=

the “effective”
B - m
A = last epoch duration n — number of parties

based on block timestamps PT'A of the epoch




... with recalculation, more
attacks may pbe possible!

 Bahack [B13] attack:

* Mine a chain in private with timestamps in rapid
succession.

* This will induce an artificially high target.

e \Which increases variance! Concentration bounds
do not hold anymore!
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approximation that is performed on f
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Proof |deas

introduce a measure of “goodness” regarding the
approximation that is performed on f

introduce a notion of typicality for executions that enables
concentration arguments

show (given a bound on fluctuation) that a good
initial approximation on f, provides good Targets per
round for a number of rounds.

show that “per round goodness” enforces
sufficiently correct timestamps.

show that sufficiently correct timestamps
result in sufficiently good next approximation for f




(n,6)-Goodness

* (n,0)-good chain: all recalculation points satisfy:
77f0 < f(T7 n'r) < Hf()

* (n,6)-good round in execution £
nf < f(T™NE)n,)  f(TP™(E),n,) <0f

* (n,6)-good execution E : when all rounds are (n,6)-
good In E.



(n,0)-Goodness (2)

[recall a block of target T has difficulty 1/T ]

(), = unique” difficulty calculated in round r using
“‘normal” (not too hard) targets

* Theorem. If ris an (n,6)-good round in execution E,

ElQr(Er—1)] > (1 —0f)pn,

Q- (F,._1) = Unigue difficulty conditioned on the history
of the execution so far.



Concentration

* "Per round”™ arguments regarding relevant random
variables are not sufficient.

* We need executions with "good behavior” over a
sequence of rounds, i.e., variables should be
concentrated around their means.

NIS IS Not easy anymore to get: the probabillities
" the experiments performed per round depend

T
o
O

N the history! (due to target recalculation).



Typical Execution

f a given sequence of rounds S, is such that
nonest parties would have collected sufficiently
many blocks (~ m) of “reasonably” big target
then

* [he average unigue difficulty is lower bounded.

|S‘( > ElQr(Er-) ) —e(1=0f)p> n, )

resS

 [he average max difficulty is upper bounded

1
TS (1+ep> n,
rc S



Typical Execution, (2)

 [he adversary has

* (1) acquired <« m blocks of very small target

e (2) the average sum of difficulty of higher targets

IS upper bounded by

5]

L

e)pZtr

resS



Typical Execution, (3)

e and as before:
e No hash function collisions.

* No hash value predictions.



Typical Execution, (4)

- Theorem. Most poly-bounded executions are typical.

Proof Idea. Focus on a single sequence of
rounds (union bound will imply the statement).

(case 1) Consider unigue difficulty and define
the martingale

Xo=0;X,= ) Qi—) E[Qi|&-]
1€ 7]
By bounding the variance of X, — X,_;
we can obtain a tail bound
(other cases similar)



Theorem

 There are y>1, s ~ epoch time m/t, small 9, so that
for any (y, s) - respecting environment, common
prefix and chain quality will fail with probability
negligible in m, k (for tr= (1-0)nr)

* Hence we obtain a robust transaction ledger.
* preconditions consistent with bitcoin

parameterization, (however our bounds not tight
enough for security to follows)



So.. Is It done?
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So.. Is It done?

Investigate further rationality / incentive-compatibility e.g... [K-
Koutsoupias-Kyropoulou-Tselekounis16,PS16]...

Investigate further semi-synchronous / asynchronous behavior ...
[SompolinskyZohar15,PSS16]...

nvestigate alternative protocols, POW-based blockchain protocols, ...
'Sompolinsky-Zohar14,EyalGencerSirerRenesse 15,K-
Panagiotakos16,Pass-Shi16]...

Alternatives to proof-of-work, proof-of-stake, proof-of-space e.g.,... [K-
Russell-David-Oliynykov16, ParkPietrzakKwonAlwenFuchsbauerGazi15]...

Understand/design multi-party protocols using blockchain, e.g.,..
[KatzMillerShi14, AndrychowiczDziembowski14 KZikasZhou15]...
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