
Proving the security of
blockchain protocols

Aggelos Kiayias
aggelos.kiayias@ed.ac.uk

project CODAMODA project PANORAMIX for supporting lecture
material development

Based on joint work with Juan Garay, Nikos Leonardos
Gratefully acknowledging research and curriculum development support

mailto:aggelos.kiayias@ed.ac.uk

Foundations of Blockchain
Protocols

• Understand the fundamental security properties
of these protocols and obtain proofs of security in
formal adversarial models.

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

Building Secure Systems

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

Building Secure Systems

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

Building Secure Systems

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

Building Secure Systems

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

Building Secure Systems

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

Building Secure Systems

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

Building Secure Systems

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

are these resources
indeed available?

Building Secure Systems

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

are these resources
indeed available?

is the threat model
realistic?

Building Secure Systems

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

are these resources
indeed available?

is the threat model
realistic?

are the assumptions
plausible?

Building Secure Systems

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

are these resources
indeed available?

is the threat model
realistic?

are the assumptions
plausible?

is the solution
efficient?

Building Secure Systems

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

One objective, many solutions

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

candidate
solution

security proofassumptions

One objective, many solutions

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

candidate
solution

security proofassumptions

candidate
solution

security proofassumptions

One objective, many solutions

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

candidate
solution

security proofassumptions

candidate
solution

security proofassumptions

candidate
solution

security proofassumptions

One objective, many solutions

…What is an objective?
• Compare:

Alice and Bob
want to

communicate
securely

vs.

Secure Channel as an Objective
secure channel
between two

parties

active man-in-
the-middle

attacker

TCP/IP,
local randomness, 

PKI or authenticated
channels

Diffie Hellman
1976—

TLS1.2 in 2008

security proofs
DY1983—

BFKPSB2014
DDH

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

Bitcoin blockchain as an objective?

Based on Nakamoto09

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

bitcoin
blockchain

protocol

Bitcoin blockchain as an objective?

Based on Nakamoto09

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

unreliable
unauthenticated

broadcast

bitcoin
blockchain

protocol

Bitcoin blockchain as an objective?

Based on Nakamoto09

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

bounded
hashing power

?

unreliable
unauthenticated

broadcast

bitcoin
blockchain

protocol

Bitcoin blockchain as an objective?

Based on Nakamoto09

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

provide
reliable record

of tx’s ?

bounded
hashing power

?

unreliable
unauthenticated

broadcast

bitcoin
blockchain

protocol

Bitcoin blockchain as an objective?

Based on Nakamoto09

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

provide
reliable record

of tx’s ?

bounded
hashing power

?

unreliable
unauthenticated

broadcast

bitcoin
blockchain

protocol

Collision
Resistance

POW ?

Bitcoin blockchain as an objective?

Based on Nakamoto09

objective

threat model

resources
that can be

utilized

candidate
solution

security proofassumptions

provide
reliable record

of tx’s ?

bounded
hashing power

?

unreliable
unauthenticated

broadcast

bitcoin
blockchain

protocol

?
Collision

Resistance
POW ?

Bitcoin blockchain as an objective?

Based on Nakamoto09

What about consensus?

• One of the classical problems in Computer
Science, [Lamport,Shostak,Pease 1980].

The Consensus Problem
implementing consensus:

<insert,b1> <insert,b2> <insert,bn>

b b b

Agreement = all parties output the same value
Validity = if all honest parties have the same insert
bit, then this matches the output
Termination = all honest parties terminate

Consensus as an objective
objective:
consensus

adversary
commands
minority of
resources

authenticated
point to point

channels

multiple times
Dolev Strong

proof in a
synchronous

model

Digital
signatures

exemplary
instantiation

via Dolev-Strong’83

Consensus as an objective
objective:
consensus

adversary
commands
minority of
resources

authenticated
point to point

channels

multiple times
Dolev Strong

proof in a
synchronous

model

Digital
signatures

exemplary
instantiation

via Dolev-Strong’83

Consensus as an objective
objective:
consensus

adversary
commands
minority of
resources

authenticated
point to point

channels

multiple times
Dolev Strong

proof in a
synchronous

model

Digital
signatures

unreliable
unauthenticated

broadcast

exemplary
instantiation

via Dolev-Strong’83

The Ledger Objective
• First formal definition of the objective of a “robust

transaction ledger” was formulated by  
 Garay, K, Leonardos in [GKL14]

https://eprint.iacr.org/2014/765

The Ledger Objective
• First formal definition of the objective of a “robust

transaction ledger” was formulated by  
 Garay, K, Leonardos in [GKL14]

https://eprint.iacr.org/2014/765

• In the same work, we proved that a suitable
abstraction of the bitcoin protocol (the bitcoin
backbone) realizes the ledger objective

• … and also can be used to achieve other primitives
such as consensus (with some work..)

Defining the ledger objective

Persistence: parameter k. If an honest
party reports a transaction tx as “stable”
(>k blocks deep) then, whenever an honest party
reports it as stable, it will be in the same position

Liveness: parameters u, k. If all honest parties
attempt to insert the transaction tx in the ledger,
then, after u rounds, all honest parties will report
it as stable (>k blocks deep) and will always do so

transaction processing time : u as a function of k

and protocol organizes transactions in a sequence of blocks
imagine that time is divided in rounds

Synchronous Model
• Time is divided in rounds.

• In each round each party is allowed q queries to a
hash function (RO)

• messages are sent through a “diffusion” mechanism

• The adversary is rushing and may :  
1. spoof messages 
2. inject messages  
3. reorder messages

• There are n-t honest parties each one producing q queries
to the hash function per round.

• The adversary is able to control t parties acting as a
malicious mining pool.

• A “flat” version of the world in terms of hashing power.

• It is worse for honest parties to be separate (they have to
pay the price of being decentralized).

Model Participants

Execution & View
⇧protocol
Aadversary

environment Z

VIEW⇧
A,Z(1

�) concatenation of the  
view of each party at each round

n parties

random variable with support :  
1. coins of
2. Random oracle

A,Z, n copies of ⇧

3 PPT machines

Round structure

Env

Adv

broadcast

end of round i beginning of round i+1

Env

Adv

input

Hash Hash

q queries

users

⇧⇧ ⇧ ⇧ ⇧ ⇧

rushing

output

Property of a protocol
⇧a protocol

a number of parties n, t of which 
 controlled by adversary

fix

We say that the protocol has property

a predicate

if and only if

8A 8Z Prob[Q(VIEW⇧
A,Z(1

�)] � 1� ✏

✏ = negl(�)

Q

Q

with error

typically :

✏

Generality of the model

Adv Adv

⇧⇧

some parties
receiving only some

of the messages

a large mining pool
that is performing

some type of selfish
mining

Or any combination thereof

⇧0

• We quantify over all possible adversaries; this includes:

The Bitcoin Backbone
Protocol

• An abstraction based on the bitcoin
implementation.

• Importantly : it distinguishes between data
structure (blockchain) and application layer
(transactions).

[Garay-K-Leonardos2014]

Bitcoin Backbone (1)

• players have a state in the form of a “blockchain”:

parameterized by

C

H()

xi
G()G()

sisi�1

xi�1
ctr ctr

V (x1, . . . , xi) = true

The contents of satisfy the predicateC

and G(·), H(·) hash functions

...

V (·), I(·), R(·)

< T

Bitcoin Backbone (2)

• Within a round, players obtain (INSERT, x) symbols from
the environment and network and process them

parameterized by
and G(·), H(·) hash functions

• Then they use their q queries to to obtain a new
block by trying

H(·)

G() ctr
si+1

xi+1

ctr = 0, 1, 2, . . .

xi+1 = I(. . . all local info . . .)

V (·), I(·), R(·)

Bitcoin Backbone (3)

• If a player finds a new block it extends

• The new is propagated to all players via the
(unreliable/anonymous) broadcast

C

xi
xi�1

C

V (·), R(·), I(·)parameterized by

Bitcoin Backbone (3)

• If a player finds a new block it extends

• The new is propagated to all players via the
(unreliable/anonymous) broadcast

C

xi
xi�1

xi+1

C

V (·), R(·), I(·)parameterized by

Bitcoin Backbone (4)
• A player will compare any incoming chains and the

local chain w.r.t. their length/difficulty

yiyi�1

• Finally a player given a (Read) symbol it will return
R(x1, x2, . . . , xi+1)

Bitcoin Backbone (4)
• A player will compare any incoming chains and the

local chain w.r.t. their length/difficulty

xi
xi�1

xi+1

yiyi�1

• Finally a player given a (Read) symbol it will return
R(x1, x2, . . . , xi+1)

Bitcoin Backbone (4)
• A player will compare any incoming chains and the

local chain w.r.t. their length/difficulty

xi
xi�1

xi+1

yiyi�1

• Finally a player given a (Read) symbol it will return
R(x1, x2, . . . , xi+1)

Better Chain !
is adopted

Validate

T

POW

T

Main Loop

Requirements

• Input Validity. Function I(.) produces inputs
acceptable according to V(.)

• Input Entropy. Function I(.) on the same input, will
not produce the same output with overwhelming
probability.

Input Entropy

• Simplifying assumption: I(.) chooses a random nonce
as part of x.

• Subsequently, function G maps the random nonces to
their hashes.

✓
q
total

2

◆
2��the parties choose the same

random nonce twice, has probability <=

G(.) maps those values to the same
one (collision)

✓
q
total

2

◆
2��<=

H(car,G(s, x)) < T

Backbone Protocol
Properties

Common Prefix

(informally)

If two players prune a
sufficient number of

blocks from their
chains they will obtain

the same prefix

Chain Quality

(informally)

Any (large enough)
chunk of an honest
player’s chain will

contain some blocks
from honest players

Chain Growth

(informally)

the chain of any
honest player grows at
least at a steady rate -

the chain speed
coefficient

Based on work of [GKL14, KP15]

CP: will honest players
converge?

Common Prefix

8r1, r2, (r1  r2), P1, P2, with C1, C2 : Cdk
1 � C2

History : “strong” version of common prefix [K-Panagiotakos15,16].
Originally [GKL14] considered the case with r1 = r2
Note that [GKL14] did not black-box reduce persistence to CP.
[PassSeemanShelat16] highlighted this and proposed “consistency”
to provide a black-box reduction. For the same goal,
[K-P15,16] strengthened common prefix, as shown above.

CQ: are honest blocks going
to be adopted by the parties?

Chain Quality

History : Property introduced in [GKL14]

Parameters µ 2 (0, 1), k 2 N

produced by the adversary is less than µk

The proportion of blocks in any k-long subsequence

Chain Growth: does the
chain grow?

Chain Growth

History : Property introduced in [KP15], while it  
 was implicit in [GKL14] (proven a related lemma but
never given name).

Parameters ⌧ 2 (0, 1), s 2 N

r2 � r1 � s =) |C2|� |C1| � ⌧s

8r1, r2 honest player P with chains C1, C2

Proof strategy

1.Define the notion of typical execution.

2.Argue that typical executions have with
overwhelming probability.

3.Prove CG, CP, CQ

4.Derive persistence and liveness.

Notations, (1)

• Let S a set of consecutive rounds.

• X(S) = number of successful rounds.

• Y(S) = number of uniquely successful rounds.

• Z(S) = total number of PoWs computed during S.

Notations, (2)
probability
at least one honest
party finds a POW
in a round

Observe

p = q/2

probability
exactly one honest
party finds a PoW

f = 1� (1� T

2
)q(n�t)

f = pT (n� t)� (
T

2
)2(. . .) ⇡ pT (n� t)

� pT (n� t)(1� T

2
)q(n�t)�1 > (1� f)pT (n� t)

Expectations
Easy from linearity :

E[X(S)] ⇡ pT (n� t)|S|

E[Y (S)] > (1� f)E[X(S)]

E[Z(S)] = pT t|S|

Suppose now that n� t

t
> 1 + �

It follows
E[X(S)] > (1 + �)E[Z(S)]

E[Y (S)] > (1 + �)(1� f)E[Z(S)]

Typical Executions, (1)
• Let κ be the security parameter.

• A polynomial in κ execution is typical with
parameter if for any set of rounds S, |S| = ⌦()

X(S) > (1� ✏)E[X(S)]

Y (S) > (1� ✏)E[Y (S)]

Z(S) < (1 + ✏)E[Z(S)]

"

• No collisions, or predictions take place against H(.)

Typical Executions, (2)
Theorem. Typical executions happen almost always

Case 1. Suppose that
9S : X(S)  (1� ✏)E[X(S)]

_Y (S)  (1� ✏)E[Y (S)]

_Z(S) � (1 + ✏)E[Z(S)]

X,Y,Z the binomial distribution so we can show
with overwhelming probability in κ via a Chernoff bound.

Case 2. There is a collision or prediction for the hash function.
Follows from RO assumption + input entropy assumption.

Proof

Typical Executions, (2)
• Chernoff bounds

Pr[X  (1� �)µ]  e��2µ/2

Pr[X � (1 + �)µ]  e��2µ/3

X is a binomial distribution µ = E[X]

X =
nX

i=1

Xi

E.g., sequence of n independent Bernoulli Trials

Xi 2 {0, 1},Pr[Xi = 1] = p

µ = np

Common Prefix, (1)
8r1, r2, (r1  r2), P1, P2, with C1, C2 : Cdk

1 � C2

Recall:

Proof (by contradiction):

C1

C2

Last honest
block at time
stamp r2r1

P1

P2

r
first round >= where an honest
party has a chain with

r1

r⇤

(could be the genesis)

Cdk
1 6� C0

2
C0
2

r0
 r0

k = ⌦()

Common Prefix, (2)
At round r � 1

All honest parties have a chain with
At the end of round chain

Cdk
1 � Cr�1

iCr�1
i

r � 1 C0
2 is transmitted

Cdk
1 6� C0

2

for which we know that

|C0
2| � |C1|

[by assumption] [by the fact that will be accepted
at round by an honest party while 
at least one honest party at round
 possessed chain]

C0
2

r1  r C1

r

Common Prefix, (3)
Consider the set of rounds

C1Last honest
block at time
stamp

r
r⇤

(could be the genesis)

C0
2

r � 1

r0
 r0

S = {r⇤ + 1, . . . , r � 1}

Common Prefix, (4)
• Consider a uniquely successful round in

• lemma #1. If a block created in a uniquely successful
round at position m in a blockchain, 
then no other honest player will ever mine at position
m in any blockchain.

• Therefore each uniquely successful round in S 
creates a block that must be matched by another block
of the adversary

• lemma #2. Such adversarial block should also be
created within S (by the choice of r* and typicality)

S = {r⇤ + 1, . . . , r � 1}

Common Prefix, (5)
• It follows that Z(S) � Y (S)

Y (S) > (1� ✏)E[Y (S)]

Z(S) < (1 + ✏)E[Z(S)]

By typicality:

E[X(S)] ⇡ pT (n� t)|S|
E[Y (S)] > (1� f)E[X(S)]

E[Z(S)] = pT t|S|

recall: (1 + ✏)pT t|S| > (1� ✏)(1� f)pT (n� t)|S|

from which we obtain a contradiction as long as

which is implied by:
n� t

t
> 1 + �

() n� t

t
<

1 + ✏

(1� ✏)(1� f)

1 + � >
1 + ✏

(1� ✏)(1� f)

� > 2✏+ f

and |S| = ⌦()

Common Prefix, (5)
• It follows that Z(S) � Y (S)

Y (S) > (1� ✏)E[Y (S)]

Z(S) < (1 + ✏)E[Z(S)]

By typicality:

E[X(S)] ⇡ pT (n� t)|S|
E[Y (S)] > (1� f)E[X(S)]

E[Z(S)] = pT t|S|

recall: (1 + ✏)pT t|S| > (1� ✏)(1� f)pT (n� t)|S|

from which we obtain a contradiction as long as

which is implied by:
n� t

t
> 1 + �

() n� t

t
<

1 + ✏

(1� ✏)(1� f)

1 + � >
1 + ✏

(1� ✏)(1� f)

� > 2✏+ f
QED

and |S| = ⌦()

Chain Quality, (1)
• Consider a chain of an honest party and  

consecutive blocks from that chain.
C `

• The chain quality coefficient is  
where

Proof (by contradiction)

Consider a sequence of blocks Bu . . . Bv

in the chain of an honest party with ` = v � u+ 1

µ =
1

�n� t

t
> �(1 + �)

Chain Quality, (2)
• Define an expanded sequence of blocks

Bu0 . . . Bv0 L = v0 � u0 + 1 � `

So that
(1) was produced by an honest party at round
(2) was accepted by an honest party at round

(such extension is well defined)

Bu0

Bv0

x = number of blocks produced by honest parties

For the sake of contradiction:

r1
r2

S = {r1, . . . , r2}

(or is genesis)

x < (1� µ)`

Chain Quality, (3)
• Lemma #1. Because of typicality all the L blocks

are computed within S = {r1, . . . , r2}

• Using the above and we have :

• Lemma #2. Because of the choice of S, we have that  
 (otherwise no honest party would accept) L � X(S) Bv0

Z(S) � L� x � µL � µX(S)

x < (1� µ)`

Chain Quality, (4)
• It follows that

Z(S) < (1 + ✏)E[Z(S)]

By typicality:

E[X(S)] ⇡ pT (n� t)|S|
E[Y (S)] > (1� f)E[X(S)]

E[Z(S)] = pT t|S|

recall:

from which we obtain a contradiction as long as

which is implied by:

and |S| = ⌦()Z(S) � µX(S)

X(S) > (1� ✏)E[X(S)]

�(1 + ✏)pT t|S| > (1� ✏)pT (n� t)|S|

() n� t

t
< �

1 + ✏

1� ✏

1 + � >
1 + ✏

1� ✏

� > 2✏

n� t

t
> �(1 + �)

Chain Quality, (4)
• It follows that

Z(S) < (1 + ✏)E[Z(S)]

By typicality:

E[X(S)] ⇡ pT (n� t)|S|
E[Y (S)] > (1� f)E[X(S)]

E[Z(S)] = pT t|S|

recall:

from which we obtain a contradiction as long as

which is implied by:

QED

and |S| = ⌦()Z(S) � µX(S)

X(S) > (1� ✏)E[X(S)]

�(1 + ✏)pT t|S| > (1� ✏)pT (n� t)|S|

() n� t

t
< �

1 + ✏

1� ✏

1 + � >
1 + ✏

1� ✏

� > 2✏

n� t

t
> �(1 + �)

Chain Growth, (1)
• Consider a chain of an honest party  C

• The chain growth coefficient is

Proof (direct)
Observe that with any successful round the chain
of the honest parties grows by a block (independently
of the adversarial strategy)

⌧ = (1� ✏)f

s = ⌦()

Chain Growth, (2)
• In s = |S| rounds, we have an expectation of

E[X(S)] ⇡ pT (n� t)|S| blocks

• Due to typicality: X(S) > (1� ✏)E[X(S)]

Thus, we will obtain (1� ✏)pT (n� t)s blocks
= (1� ✏)fs

Chain Growth, (2)
• In s = |S| rounds, we have an expectation of

E[X(S)] ⇡ pT (n� t)|S| blocks

• Due to typicality: X(S) > (1� ✏)E[X(S)]

Thus, we will obtain (1� ✏)pT (n� t)s blocks
= (1� ✏)fs

QED

Proving our objective

Assume persistence fails, i.e.,
there is a transaction reported as stable
by an honest player at round

is reported as stable by honest player
in a different position

P1

P2

r1

“The bitcoin backbone implements a robust transaction ledger.”

but at round r2 � r1

Part 1 : Persistence

(1) typical executions with error  
(2)

✏
n� t

t
> �(1 + �)

Assumptions : � > 2✏+ f
f ⇡ pT (n� t)

Proving our objective, (2)

Given the condition
it should hold that the
chains C1, C2 P1, P2of satisfy

Cdk
1 6� C2

Cdk
1 contains tx at round

Cdk
2

but in a different position, thus

|C2| < |C1|

which violates CP

contains tx at round
r1

r2 � r1

Proving our objective, (3)
“The bitcoin backbone implements
a robust transaction ledger.”

Part 2 : Liveness

Consider a transaction transmitted for u rounds,
we examine what happens at the onset of the
next round.

with parameter u =
1

(1� ✏)f(1� 1
�)

Proving our objective, (4)

Given the chain growth
⌧uthere will be blocks in each honest party chain

of those, will originate to an honest

party. Given the choice of
we have that this is at least one, and hence
it will include the transaction tx.

(1� 1

�
)⌧u

u

Proving our objective, (4)

Given the chain growth
⌧uthere will be blocks in each honest party chain

of those, will originate to an honest

party. Given the choice of
we have that this is at least one, and hence
it will include the transaction tx.

(1� 1

�
)⌧u

u

QED

Recall : Consensus
implementing consensus:

<insert,b1> <insert,b2> <insert,bn>

b b b

Agreement = all parties output the same value
Validity = if all honest parties have the same insert
bit, then this matches the output
Termination = all honest parties terminate

Applying the backbone
protocol

• It is all about defining V, I, R :

• V = validity predicate.

• I = input function

• R = read function

The Nakamoto “consensus
protocol”

https://www.mail-archive.com/cryptography@metzdowd.com/msg09997.html

Applying the backbone for
consensus, (1)

Nakamoto “consensus protocol”

It works .. but only with constant probability of success
(not overwhelming)

Applying the backbone for
consensus, (2)

A (1/3) “consensus protocol” (from GKL14)

It works .. but only up to 1/3 adversarial power.

Applying the backbone for
transaction ledger

(from GKL14)

it satisfies persistence and liveness with
overwhelming probability as long as
also digital signature security holds.

Applying the backbone for
consensus, (3)

• Main obstacle (intuitively)  
the blockchain protocol does not provide
sufficiently high chain quality.

• … we cannot guarantee that we have enough
blocks originating from honest parties.

• How to fix this?

Applying the protocol for
consensus, (4)

•  The n parties build a ledger but now generate
transactions based on POW that contain their inputs. !

•  Once the blockchain is long enough the parties’ prune
the last k blocks and output the majority of the values
drawn from the set of transactions in the ledger.!

Beware! given that POW’s are used for!
two different tasks how do we prevent!
the attacker from shifting its hashing power!
from the one to the other? !

2-for-1 POWs

given!
verify:!

given!
verify:!

parallel composition of POW protocols

2-for-1 POWs

Not!
Secure!

given!
verify:!

given!
verify:!

parallel composition of POW protocols

2-for-1 POWs

Not!
Secure!

given!
verify:!

given!
verify:!

given!

verify:!

given!

verify:!

parallel composition of POW protocols

Key Lemma

• Lemma. Finding POW solution for either “side” of
the POW protocol is an independent event.

• [note that it works only for a suitable choice of T
and T’]

[GKL14] consensus protocol, (1)
parties mine POWs for each block (as in bitcoin backbone)

parties mine POWs for each input in {0,1} (input+nonce)

inp

inp

inp

inp

inp

inp inp

inp

inp

they keep transmitting POW-inputs, until they are accepted.

Finally, after the blockchain grows sufficiently,
they chop the last k blocks and return the majority
among unique inputs in the (common) prefix.

[GKL14] consensus protocol, (2)
Theorem. The [GKL14] protocol using 2-for-1 POW  
 solves consensus for honest majority.

[GKL14] consensus protocol, (2)
Theorem. The [GKL14] protocol using 2-for-1 POW  
 solves consensus for honest majority.

Key proof idea

[GKL14] consensus protocol, (2)
Theorem. The [GKL14] protocol using 2-for-1 POW  
 solves consensus for honest majority.

Key proof idea
recall : the output of the protocol
is the majority bit from the inputs
in the common prefix

[GKL14] consensus protocol, (2)

The (minuscule) chain quality of the protocol, given  
 parties transmit inputs until they are accepted, it  
guaranteeing that they will be included eventually.

Theorem. The [GKL14] protocol using 2-for-1 POW  
 solves consensus for honest majority.

Key proof idea
recall : the output of the protocol
is the majority bit from the inputs
in the common prefix

[GKL14] consensus protocol, (2)

The (minuscule) chain quality of the protocol, given  
 parties transmit inputs until they are accepted, it  
guaranteeing that they will be included eventually.
Moreover, because each input, has a POW, the
majority of unique POW-inputs will be originating
from honest parties in any sufficiently long part
of the chain (such as the common prefix)

Theorem. The [GKL14] protocol using 2-for-1 POW  
 solves consensus for honest majority.

Key proof idea
recall : the output of the protocol
is the majority bit from the inputs
in the common prefix

Implications to Fairness
• In the [GKL14] consensus protocol, each set of

parties’ inputs is fairly represented (in terms of
proportionality) in the blockchain. This is not the
case in Bitcoin! (due to block withholding / selfish
mining, [Eyal-Sirer14])

• Using this approach [Pass-Shi16] (and allowing the
protocol to run continuously) argued a fair
blockchain “fruitchain” (where rewards are
allocated fairly).

[GKL16] The Dynamic
setting : New Objective

• Analyze the bitcoin “backbone” [GKL14] in the
Dynamic - Byzantine setting.

• prove it satisfies the properties of

• common prefix

• chain quality

• chain growth

• Then shot it implements a robust transaction ledger

Dynamic Execution
• Environment creates/disables parties.

• Count the number of ‘Ready’ parties (those that are
mining) in each round r and adversarial parties

• The environment may increase or decrease the
number of honest parties, but will be subject to a
constraint

nr versus tr

max

r2S
nr  �min

r2S
nr8S, |S|  s

(�, s)-respecting environment

Protocol Intuition

f(T, n) = 1�
⇣
1� T

2

⌘qnProbability
at least one of n parties
finds a POW with target T
within one round

From [GKL14] : f should be not too small or too big.

Parties include inputs in a block structure and find
POWs [a hash value less than a target T]

xi
pow pow

xi�1

pow
xi+1

ts
ts ts

p = q · 2�

⇡ pTn

xi

expected # of
blocks per round,

per party
pT ⇡

Parties adopt chain with highest “difficulty”
X

i

1

Ti

importance of f
• If f becomes too small, parties do not do progress;

chain growth goes too slow. [liveness is hurt]

• if f becomes too large, parties “collide” all the time;
an adversary, exploiting network scheduling, can
exploit that and lead them to a forked state.
[agreement is hurt]

To resolve this in a dynamic environment,
 we may recalculate the target T to keep f
 constant f(T, n) ⇡ f(T0, n0) = f0

Target Recalculation

D(") = T0 and D(r1, . . . , rv) =

8
><

>:

1
⌧ · T if

n0
n · T0 < 1

⌧ · T ;
⌧ · T if

n0
n · T0 > ⌧ · T ;

n0
n · T0 otherwise,

n0 = estimation of the number of ready parties at the onset

T0 = initial target

⌧ = recalculation threshold parameter
m = epoch length in blocks

� = last epoch duration
based on block timestamps

next target

T = target in effect

n =
m

pT�

the “effective”
number of parties
of the epoch

… with recalculation, more
attacks may be possible!

• Bahack [B13] attack:

• Mine a chain in private with timestamps in rapid
succession.

• This will induce an artificially high target.

• Which increases variance! Concentration bounds
do not hold anymore!

Proof Ideas
introduce a measure of “goodness” regarding the

approximation that is performed on f

Proof Ideas
introduce a measure of “goodness” regarding the

approximation that is performed on f

introduce a notion of typicality for executions that enables
concentration arguments

Proof Ideas
introduce a measure of “goodness” regarding the

approximation that is performed on f

show (given a bound on fluctuation) that a good
initial approximation on f, provides good Targets per

round for a number of rounds.

introduce a notion of typicality for executions that enables
concentration arguments

Proof Ideas
introduce a measure of “goodness” regarding the

approximation that is performed on f

show (given a bound on fluctuation) that a good
initial approximation on f, provides good Targets per

round for a number of rounds.
show that “per round goodness” enforces

sufficiently correct timestamps.

introduce a notion of typicality for executions that enables
concentration arguments

Proof Ideas
introduce a measure of “goodness” regarding the

approximation that is performed on f

show (given a bound on fluctuation) that a good
initial approximation on f, provides good Targets per

round for a number of rounds.
show that “per round goodness” enforces

sufficiently correct timestamps.

show that sufficiently correct timestamps
result in sufficiently good next approximation for f

introduce a notion of typicality for executions that enables
concentration arguments

(η,θ)-Goodness

• (η,θ)-good chain: all recalculation points satisfy:  

• (η,θ)-good round in execution E 

• (η,θ)-good execution E : when all rounds are (η,θ)-  
good in E.

⌘f0  f(T, nr)  ✓f0

⌘f  f(Tmin
r (E), nr) f(Tmax

r (E), nr)  ✓f

(η,θ)-Goodness (2)

• Theorem. If r is an (η,θ)-good round in execution E,
E[Qr(Er�1)] � (1� ✓f)pnr

Qr(Er�1) = Unique difficulty conditioned on the history
of the execution so far.

Qr =“unique” difficulty calculated in round r using
“normal” (not too hard) targets

[recall a block of target T has difficulty 1/T]

Concentration
• “Per round” arguments regarding relevant random

variables are not sufficient.

• We need executions with “good behavior” over a
sequence of rounds, i.e., variables should be
concentrated around their means.

• This is not easy anymore to get: the probabilities
of the experiments performed per round depend
on the history! (due to target recalculation).

Typical Execution
• If a given sequence of rounds S, is such that

honest parties would have collected sufficiently
many blocks (~ m) of “reasonably” big target
then

• The average unique difficulty is lower bounded.  
 

• The average max difficulty is upper bounded

(1 + ✏)p
X

r2S

nr

X

r2S

E[Qr(Er�1)]� ✏(1� ✓f)p
X

r2S

nr

1

|S|

1

|S|

⇣ ⌘

Typical Execution, (2)

• The adversary has

• (1) acquired blocks of very small target

• (2) the average sum of difficulty of higher targets
is upper bounded by (1 + ✏)p

X

r2S

tr

⌧ m

1

|S|

Typical Execution, (3)

• and as before:

• No hash function collisions.

• No hash value predictions.

Typical Execution, (4)
• Theorem. Most poly-bounded executions are typical.

Proof Idea. Focus on a single sequence of
rounds (union bound will imply the statement).

(case 1) Consider unique difficulty and define
the martingale

X0 = 0;Xr =
X

i2[r]

Qi �
X

E[Qi | Ei�1]

By bounding the variance of Xr �Xr�1

we can obtain a tail bound
(other cases similar)

Theorem
• There are γ>1, s ~ epoch time m/f, small δ, so that

for any (γ, s) - respecting environment, common
prefix and chain quality will fail with probability
negligible in m, κ (for tr = (1-δ)nr)

• Hence we obtain a robust transaction ledger.

• preconditions consistent with bitcoin  
parameterization, (however our bounds not tight
enough for security to follows)

So.. is it done?

So.. is it done?
No!

So.. is it done?
• Investigate further rationality / incentive-compatibility e.g... [K-

Koutsoupias-Kyropoulou-Tselekounis16,PS16]…

No!

So.. is it done?
• Investigate further rationality / incentive-compatibility e.g... [K-

Koutsoupias-Kyropoulou-Tselekounis16,PS16]…

• Investigate further semi-synchronous / asynchronous behavior …
[SompolinskyZohar15,PSS16]…

No!

So.. is it done?
• Investigate further rationality / incentive-compatibility e.g... [K-

Koutsoupias-Kyropoulou-Tselekounis16,PS16]…

• Investigate further semi-synchronous / asynchronous behavior …
[SompolinskyZohar15,PSS16]…

• Investigate alternative protocols, POW-based blockchain protocols, …
[Sompolinsky-Zohar14,EyalGencerSirerRenesse15,K-
Panagiotakos16,Pass-Shi16]…

No!

So.. is it done?
• Investigate further rationality / incentive-compatibility e.g... [K-

Koutsoupias-Kyropoulou-Tselekounis16,PS16]…

• Investigate further semi-synchronous / asynchronous behavior …
[SompolinskyZohar15,PSS16]…

• Investigate alternative protocols, POW-based blockchain protocols, …
[Sompolinsky-Zohar14,EyalGencerSirerRenesse15,K-
Panagiotakos16,Pass-Shi16]…

• Alternatives to proof-of-work, proof-of-stake, proof-of-space e.g.,… [K-
Russell-David-Oliynykov16, ParkPietrzakKwonAlwenFuchsbauerGazi15]…

No!

So.. is it done?
• Investigate further rationality / incentive-compatibility e.g... [K-

Koutsoupias-Kyropoulou-Tselekounis16,PS16]…

• Investigate further semi-synchronous / asynchronous behavior …
[SompolinskyZohar15,PSS16]…

• Investigate alternative protocols, POW-based blockchain protocols, …
[Sompolinsky-Zohar14,EyalGencerSirerRenesse15,K-
Panagiotakos16,Pass-Shi16]…

• Alternatives to proof-of-work, proof-of-stake, proof-of-space e.g.,… [K-
Russell-David-Oliynykov16, ParkPietrzakKwonAlwenFuchsbauerGazi15]…

• Understand/design multi-party protocols using blockchain, e.g.,..
[KatzMillerShi14, AndrychowiczDziembowski14,KZikasZhou15]…

No!

Proving the security of
blockchain protocols

Aggelos Kiayias
aggelos.kiayias@ed.ac.uk

project CODAMODA project PANORAMIX for supporting lecture
material development

Based on joint work with Juan Garay, Nikos Leonardos
Gratefully acknowledging research and curriculum development support

mailto:aggelos.kiayias@ed.ac.uk

